So-net無料ブログ作成
検索選択

第8回 原始関数と不定積分 [ネコ騙し数学]

第8回 原始関数と不定積分


高校の数学では、たとえば、原始関数と不定積分を

「導関数がf(x)である関数を不定積分、または、原始関数といい、記号であらわす。すなわち、

  

である」

と定義するなど、原始関数と不定積分の違いがかなり曖昧である。


この事情は、大学の数学においても同様で、

「関数Fに対し、導関数がfに等しい関数をfの原始関数という。原始関数をであらわし、fの不定積分という」

など、教科書によって立場が異なり、かなり混乱しているように思う。

そこで、原始関数をあらためて次のように定義することにする。


定義(原始関数)

区間I上の関数f(x)に対し、
  teisekibun-08-01.png

を満たす関数F(x)が存在するとき、F(x)f(x)の原始関数という。



定理13

関数F(x)f(x)の原始関数、すなわち、F’(x)=f(x)ならば、F(x)+CCは定数)もfの原始関数である。関数G(x)f(x)の他の原始関数ならば、差G(x)−F(x)は区間I上で定数である。すなわち、

  

である。

【証明】

F(x)f(x)の原始関数であるとすると、

  

したがって、F(x)+Cf(x)の原始関数である。G(x)f(x)の他の原始関数とすると、G’(x)=f(x)だから、H(x)=G(x)−F(x)とおくと、x∈Iのすべてのxについて

  

a∈Iである1点aをとると、平均値の定理より

  

となるξが存在し、
  

よって、G(x)−F(x)は区間I上で定数。

(証明終)


例1 実数R上の関数

  

は原始関数をもたない。

この関数f(x)が原始関数F(x)を持つとすると、x>0で微分可能でF’(x)=f(x)=0になるので、F(x)x>0で定数関数。同様に、x<0でもF'(x)=f(x)=0だから、F(x)x<0で定数関数。

そこで、
  teisekibun-08-03.png

とおくと、F(x)x=0で微分可能だからx=0で連続だから、

  

したがって、
  teisekibun-08-04.png

となり、F(x)f(x)の原始関数であることと矛盾する。

よって、f(x)は原始関数を持たない。

 


定義(不定積分)

関数f(x)を区間Iに含まれる有界閉区間上で積分可能とする。このとき、a∈Iと任意定数Cに対して

  

f(x)I上の不定積分といい、

  

であらわす。

上記のように不定積分を定義すると、

  

f(x)は実数Rに含まれる任意の任意の有界閉区間上で積分可能で、f(x)の不定積分は

  

となる。ここで、Cは任意の定数である。

このとき、F’(0)=0で、F’(0)≠f(0)=1となるので、F(x)=Cf(x)の不定積分であるが、f(x)の原始関数ではない。



例2 f(x)=xの不定積分は

  

は定数だから、これをあらためて定数とすると、

  


 


問 実数R上の関数

  

の不定積分F(x)の一つを求め、F’(x)=f(x)が成り立たないことを示せ。

【解】

a=0、積分定数C=0とする。

x<0のとき

  

x≧0のとき

  

したがって、

  

よって、F(x)x=0で微分可能でなく、F'(x)=f(x)は成り立たない。

以上のことより、(2)式で不定積分を定義すると、不定積分に対しては(1)式が必ずしも成立しないことがわかると思う。


nice!(0)  コメント(0)  トラックバック(1) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 1

この記事のトラックバックURL: