So-net無料ブログ作成

ムソルグスキー作曲「禿山の一夜」 原典版とR.コルサコフ編曲版 [今日のクラシック]

ムソルグスキー作曲の有名な「禿山の一夜」、原典版とオーケストレーションの達人、R.コルサコフの編曲とを聴き比べてみよう!!

まずはオリジナル。



R.コルサコフの編曲を聞き慣れている人にはかなり異様に聞こえるに違いない。




さすが、R.コルサコフ。
うまいね〜、色彩感に溢れ、華麗にして、一部の好きもない。
惚れ惚れとしてしまう(^^ゞ

ですが、
不気味さ、デモニッシュ感ならば、ムソルグスキーの原典版のほうが上のように思われる。
そして、これはこれで捨てがたい。
聞いていてとにかく面白い(^^)
曲としての面白さならば、こちらの方が編曲版より断然、上のように思われる。

指揮者とオケの名が伏せられているけれど、オケ、うまいね〜。
どこだろう・・・。


タグ:クラシック
nice!(0)  コメント(0)  トラックバック(0) 
共通テーマ:音楽

セイラ2 10章の続き6 [セイラ2]

宴の後

 ホトトギス達は、セイラの眠るかまくらに戻ると、男同士だけでしめやかに、しかし、セイラを起こさないように控え目であったが、賑々しい宴会を始めた。


 夕食の時には、セイラの目を盗み、密かに買い集めた彼のお酒のコレクションを、カイに飲ませることをあれほどまでに頑なに拒み続けたというのに、役には全く立たなかったけれど共に戦ったという訳であろうか、あるいは、ゴーレムに自分の存在を無視された憂さを晴らした歓びからであろうか、ホトトギスは気前良くクロウリーとカイの前に秘蔵のコレクションを提供した。


 何か裏がありそうで、カイは胡散臭そうにホトトギスの素振りを観察していたが、これと言って、おかしな様子もなかったので、彼の勧めに従い酒を飲み始めた。


 さすがはホトトギスのコレクションと言ったところであろうか、自称美食家のホトトギスの目は確かなものであった。喫茶店でのおひねりをもとにして買い集めた酒であり、それほど高いお酒ではないはずであるが、味は高級酒に決して劣らないものであった。その眼力の高さには、敬服する以外なかった。カイは、舐めるように酒を嗜みながら、ホトトギスを絶賛し出した。


「本当ですね。良くまあ、これほどの酒を集めたものです。選び方のこつを教えて欲しいものですね。」


 ホトトギスは、鼻高々に自分の蘊蓄を傾け始めた。


「値段に騙されちゃいけない。高いから美味しい酒と言う訳じゃない。色をとやかく言う奴がいるが、それも当てにならない。店の連中は、あまりいい顔をしないけれど、酒屋には大概試飲用の酒を置いているから、とにかく試飲してみるのが一番。それがない場合、店の連中の隙を突いて、ビンの蓋を舐めてみる。詰める時に付着した酒の粕がそこに付いているから、それで判別するというわけだ。もっとも、他に方法はあるけれど、ホトトギスの俺にはできるが、人間にはできないからな。」


 試飲してみるのはともかく、ビンの蓋を舐めるなど、いっぱしの人間ならできるはずがない。単にホトトギスが厚かましいだけであった。カイとクロウリーの二人は、互いの顔を見合わせて、ホトトギスに感心したことを後悔し、また、同時に、ホトトギスが酒瓶に取り付きそれを舐めている姿を彷彿し、滑稽なものを憶え、口元を綻ばせた。本当は大声を上げて笑いたいところであったけれど、彼の機嫌を損ね、彼の秘蔵酒を飲む機会をふいにすることを恐れて、声を殺しながら、互いに顔を見詰め合った。


 二人は彼の自慢話を聞いていなかったが、ホトトギスはアルコールの酔いも手伝ってさらに自慢話を始めた。


「これは蝙蝠から教えてもらった方法なんだが、酒に高周波を与えるのも結構有効なんだ。」


 彼は、そう言うと、嘴を窄め、そこにできた僅かな間隙に息を通し、超音波を発生させ、それを目の前の酒瓶に照射させた。二人は笑いから立ち直り、彼が何をしているのだろうと怪訝そうに見守っていた。人間に聞き取れない超音波であり、二人の反応も尤もなことだ、と思い、ホトトギスは、照射している超音波の周波数を低くし、人間の目で判別できるように酒瓶の表面を微かに振動させた。自分が何かを酒瓶に照射していることに、二人が気付いたことをその表情から悟ると、ホトトギスは超音波の照射を止めて説明を始めた。


「人間には聞こえないだろうが、俺はものすごい速さで空気を振動させて超音波を出していたんだな。そして、この超音波に酒瓶が共鳴していたと言うわけだ。お前達には、俺が何を言っていたか、分からないだろうから、もっと簡単に言うと、俺がこうやって口を窄めて瓶を揺らしてたと言うわけだ。こうすると、酒が上手い具合に熟成されるんだ。」


 二人は、ホトトギスの説明が今一つ良く理解できなかったが、多分そう言うものなのだろうと自分を納得させて、彼の話に頷いてみせた。


「まあ、難しいことは止めて、酒を飲もう。これは俺のおごりだから、気にすることはない。どんどん飲んでくれ。」


 カイとクロウリーの二人は、ホトトギスの勧めに従い、酒を飲み始めた。そして、酔い潰れて、その場で眠り始めた。


 ホトトギスは、二人の無様な格好を暫く見詰めてから、二人の前にあった酒瓶を次々と蹴飛ばし、カイとクロウリーの二人が泥酔しそれを散乱させたように偽装した。


「これでいいかな。」


 ホトトギスは、満足げにそう呟くと、セイラの毛布の中に忍び込み、やがて静かな寝息を立て始めた。



今日のアニソン 「ツバサ・クロニクル」から「風の街へ」 [今日のアニソン・アーカイブ]

今日のアニソンは、アニメ「ツバサ・クロニクル」から「風の街へ」



この曲が使われていたアニメのシーンは、ここであります。



この時のクロ様(刀を持った和服姿の人)が男前で格好いいんだケロよ。
ファイ(フロックコートを着た人)とのやりとりがいいんですよ。
著作権の関係で、戦闘シーンの効果音とこのセリフが欠落していて、実に惜しい。


nice!(0)  コメント(0)  トラックバック(0) 
共通テーマ:音楽

第33回 複素数列 [ネコ騙し数学]

第33回 複素数列

自然数nに1つの複素数を対応づけた

  
複素数列といい、簡単にであらわすことにする。各という。

数列に対してある有限のzが存在し、nを大きくするといくらでもzに近づくならば、極限値a収束するといい、またはとあらわす。数列の極限をより厳密にいうと次のようになる。

任意の正数εを与えたとき、ある自然数Nが存在して、n>Nであるすべてのnに対して、

  
が成り立つ。
数列が有限の値に収束しないとき、発散するという。特にとなるとき、は∞に発散するといい、またはと書く。

ちなみに、z=x+iyとすると、

  
のことね。

それで〜、
z=x+iyとすると、は、2つの実数列に対してと同じことになる。

何故ならば、

  
になるので、

  
となるし、

  

となるからだにゃ。



では、簡単な問題を2つほど。


 

問題1 次の数列の極限値を求めよ。

  

【解】

  

になるので、n→∞のとき、1+3/n→11+1/n→1になるので、上の極限は1。
で、

  

なのだから、この極限値は1+ie


問題2 ならば、である。

【解】

だから、
任意の正数εに対して,n>NならばとなるNが存在する。

よって、任意の正数εに対して,n>Nならば

  
となる。(証明終わり)

悪名高きε-N論法ならば、こうなる(^^

もっとわかりやすい証明ならば、

  

また、

  

ハサミ打ちの定理より、

  

となる。

なお、

のことだからね。



このあたりの話は、基本的に実数列と同じなので、ねむねこ幻想郷の姉妹ブログにして数学専門ブログの「ねこ騙し数学」の記事を読んでもらえるとありがないにゃ。
形式的はほとんど同じなので。


参考:

第2回 数列の極限
http://nekodamashi-math.blog.so-net.ne.jp/2015-05-13


カール・シューリヒト指揮のブラームス交響曲第2番 [今日のクラシック]

偶然、この動画、演奏を見つけたので、ご紹介します。



シューリヒトにしては・・・。
録音の音はヒドイけれど、なかなか、いい演奏じゃないですか。
 ―――シューリヒトの録音としては、これでも音は随分といい♪―――

この人は、有り余る才能を有していながら、ホント録音に恵まれなかったね。
もっと評価されていいい指揮者だと思う。


タグ:クラシック
nice!(0)  コメント(0)  トラックバック(0) 
共通テーマ:音楽

セイラ2 10章の続き5 [セイラ2]


 最初の内は、遠巻きにゴーレムの姿を見ていたクロウリーとカイが、ゴーレムが落とし穴から抜け出せないことを見取ると、勝利の舞いを続けるホトトギスの下に恐る恐る近づき、落とし穴の縁に立ち、その中を覗き込んだ。そして、クロウリーが感心したようにホトトギスに話しかけた。


「そうですよね。何も、馬鹿正直に戦う必要はないのですよね。これで、十分なのですね。」


ホトトギスは、依然舞いを続けながら、彼に答えた。


「俺様は、おまえ達とは違って、頭が良いからな。戦いとは勝てば何でもいいんだ。どんな卑怯な手段をとろうが、姑息であろうが、勝ちさえすればそれでいいんだ。」


「前の発言と矛盾するようですが、まあ、それはいいとしましょう。ところで、これはどうしますか。このまま放って置いてもいいような気もしますが、やはり、何かしないといけないのでしょうでしょうか。」


 今のところ、落とし穴に落ちたゴーレムがこの落し穴から這い出る心配はないけれど、何かの拍子で抜け出さないとは限らない。背後から突然、ゴーレムに襲われる心配があった。そうでなくとも、他の生き物に危害が及ばないとも限らない。クロウリーの言うことは、もっともであった。ホトトギスは、「そうだな」と呟き、暫く何やら考え始めた。そして、何かを思い付いたらしく、意地悪そうな笑みを二人に投げかけた。


「お前達、体が冷えてこないか。おしっこをしたくなったんじゃないか。三人で、あいつにおしっこをかけてやろう。」


 何を暢気なことを言っているのかという表情をして、カイとクロウリーはホトトギスの姿を見た。ホトトギスの自信満々な様子を見て、彼に何か策があるのだろうと思い、ホトトギスの指示に従い、三人並んでゴレームにおしっこをかけ始めた。すると、不思議なことに、鉄が酸に触れて溶け出すように、ゴーレムの石の体が小水で溶け始めた。カイとクロウリーが、狐につままれたような顔をして、その光景を眺めていると、ホトトギスが呵呵と笑い出し、その後、猛烈な勢いでその穴を埋め始めた。何事もなかったように、その落し穴を埋め戻してから、ホトトギスが二人に言った。


「連れ小便も済んだことだし、帰って、勝利の宴をやろうじゃないか。」



第32回 ちょっと、数列の復習 [ネコ騙し数学]

第32回 ちょっと、数列の復習

次回から、複素数の数列をやりますので、このイントロとして少しだけ数列の復習をしますにゃ。


まず、ε-δ論法を思い出してもらうために、次の問題をやってみるにゃ。

問題1 任意の正数εに対して

  0≦aε
であるならば、a=0であることを示すケロ。
【解】
a=0
が0≦aεを満たすことは明らか。
で、
a≠
0と仮定する。すると、条件よりa>0
ε
任意の正数なのでε=a/2と置くと、

  0<a<a/2
となる。
 ―――εは任意の正数だから、0より大きいどんな値を選んでも良い!!―――
で、a<a/2を解くとa<0となり、a>0と矛盾する。(a>0ならば、そもそも、a<a/2は成立しない!!この時点で既におかしい)
―――
あるいは、a<0かつa>0となり、a=0以外の解は存在しない、とか・・・―――
よってa=0である。


εは任意の正数だから、

  
としてもいいよね。
こうすると、

「任意の自然数nに対して

  
ならばa=0である」
となる。

それでは、数列の極限で使われるε-N論法の話をするにゃ。
かりに、次のような数列があったとする。

  
n
の値を大きくしていけば、の値がドンドンと、限りなく1に近づいていくことはわかると思うにゃ。
実際に、n=1,10,100,1000とすれば、21.11.011.001となるから。

このことを、極限の記号を使うと、

  

  
と書くにゃ。
 ―――記号「∞」は、「無限大」の意味。でも、記号「∞」は数ではないにゃ。数だと思ってはいけないにゃ―――

でも、数学では「どんどん近づく」とか「限りなく近くなる」という文学的な表現を嫌うにゃ。これは曖昧だというわけだにゃ。

ということで、現代的な数学では、次のように表現するにゃ。

任意の正数εに対して、適当な自然数Nをとると、n>Nの全てのnに対して

  
となるとき、aを数列の極限という。
あるいは、

任意の正数εに対して、ある自然数Nが存在して、

  

と定義したりするにゃ。

これがε-N論法と呼ばれる大の嫌われモノ。

例に上げた

  
だと、極限値a1になるので、

  
となるにゃ。

でだ、仮にε=1/10とすれば、

  

となるにゃ。

だから、N=10とすれば、

  
になるにゃ。
今はN=10にとったけれど、N=11N=20でも、N=100でも、構わないゃ。
同様に、ε=1/100ならば、N=100に取れば、

  

となる。この時、N=101N=200でもN=10000でも構わない。
与えられたεに対して「n>Nならば、1/n<εが成り立つ」Nを見つけらればいい。


今はεの逆数が自然数になったから簡単だったけれど、εは実数だから、たとえば、

  

みたいなやつだと、ちょっと、厄介だにゃ。電卓でも使わないことには、Nを探しだすことは難しいケロ(^^
電卓を使うと、
  

になるので、N=13>1/εにすれば、いいにゃ。

そうすると、

  

になってくれるケロ。

だけれども、数学にはガウス記号という便利なものがあるにゃ。
このガウス記号[]を使うと、

  


上の式を見るとわかるけれど、Nεによって値が変わるんだにゃ。εによって、Nの値が決まると言ってもいい。
このことをあらわすために、特に、N=N(ε)と書くことがあるにゃ。

ガウス記号[x]
は、xを越さない最大の整数mのことで、式で書くと
  m≦[x]<m+1
となるケロ。

  12≦[12.198]<12+1=13
になるので、この値は12になる。
x≧0
ならば、小数点以下を切り捨てたものになるにゃ。

x<0のときは、例えば、x=3.5として、[]、つまり、[−3.5]の値を求めて欲しいにゃ。

ちなみに、この値は−4だからね。−3じゃないよ。
だって、−3は−3.5より大きいから。−3.5を越さない最大の整数は−4だケロ。


タグ:複素解析

第31回 べき根 [ネコ騙し数学]

第31回 べき根

定義 となるn個のwをと書き、zのn乗根という。
また、1つのzに対して、n個のwが対応しているとき、n価といい、一般に2価以上を多価という。

とすれば、

  
となるので、
  

という関係がある。

何故ならば、

  
となる。

何で、⑨になるかわからないって?
これは、指数関数が周期、2πiを(基本)周期に持つ周期関数だからだにゃ。
  

こうなるので、

  
となる。

zu-31-1.jpg

「おい、バカ猫。①と②は微妙に違うじゃないか!!」
「極形式で書けば、確かに違うにゃ。だけど、xy形式の複素平面で書けば同じとみなすことができるにゃ。」

というのは、k=±nのとき、つまり、Θ=θ/n±2πのとき、

  
になってしまう。グルッと一回転して元の地点に戻ってしまうから、区別できず、同じ点とみなしても構わない。だから、k=0,1,2,・・・,n–1n個と考えて良いことになるにゃ。

それで、
実数の時と同じように、ともあらわす。特に、n=2のとき、と書く。
n価の多価関数なんだけれども、r>0のときは、実数の範囲で知られている正のn乗根をあらわすものとする。
このように約束すると、たとえば、
  
の時の根は、z=±√2となり、一貫したものになる。



では、問題を一つ。


問題 次の値を求めよ。
  
【解】

これは、

  
のべき根のことだにゃ。

だから、定義に従って、計算するにゃ。

とすると、

  

になるので、

  
となる。で、r≧0なので、

  

よって、

  

となる。

だから、

  
となり、

このことから、

  

となる。


タグ:複素解析

カール・ベーム&ウィンフィールのブラームス交響曲第1番 [今日のクラシック]

YouTubeにこの演奏がアップされていたんですね。
何も言わず、この演奏を聞いてくれ、見てくれ!!



タグ:クラシック
nice!(0)  コメント(0)  トラックバック(0) 
共通テーマ:音楽

セイラ2 10章の続き4 [セイラ2]

敵襲

 ホトトギスは、深夜、聞きなれない足音で目を覚ました。


 何だろう、森の獣であろうか。


 しかし、森の生き物は、ホトトギスの子守り歌を聞いて、眠っているはずであった。ホトトギスは、怪訝に思いながら、その足音の正体を探るために、鋭敏な耳を更に澄ました。


 その足音は、間違いなく自分達のかまくらを目指して、ゆっくりと近づいてきていた。ホトトギスは、こうしてはいられない、と思い、その正体を確かめるために、一羽敢然と外に出た。そして、音源の方に飛び去ると、木陰に身を隠しながら、その様子を窺った。


 地上最強の金看板を誇るホトトギスである。地上最強のドラゴンの骨を一蹴した実力の持ち主である彼にとって、恐れるに足る存在などこの森にいない。このため、ホトトギスは、セイラの寝込みを襲うような不埒なやからを蹴散らそうかと思ったが、何も自分一人が相手をすることもないと思い直し、梟のように羽音を完全に消し去り、セイラ達が眠るかまくらに舞い戻った。


 外敵の存在に気付かず、しあわせそうな寝顔をしているカイの顔を憎々しそうにしばらく見下ろした後、「起きやがれ」と叫び、カイの広くかわいらしい額を嘴で一突きした。その激痛で目を覚ましたカイが「何をするんだ、この馬鹿鳥」と抗議しようとするのを、彼の口に翼を当てて制止すると、言葉ではなく彼の脳味噌に直接、「ばか野郎、敵が来たんだよ。耳を澄ましてみろ」と怒鳴りつけた。カイが胡散臭そうに耳を澄まし、その足音を聞きつけ、起き上がると、今度は、クロウリーの枕元に近づき同じように額を一突きして目覚めさせた。


 その後、ホトトギスは、セイラの寝込みお襲おうとする敵を迎え撃つために、かまくらからだいぶ離れたところにカイとクロウリーを引き連れて出かけた。


 クロウリーは、ウォッカを相当飲んだこともあり、未だ寝惚けているようで、何が何だか分からない様子であったが、やがて正体を取り戻すと、どうして自分達だけなのかと、ホトトギスに尋ねた。


 ホトトギスは、飲み込みの悪いクロウリーを忌々しげに見た後、彼に怒鳴りつけた。


「敵が近くに迫っているんだぞ、大きな声を出すな。」


 森中をひるがすような罵声を浴びせた後に、彼は臆面もなくこう言いはなった。


「何でって決まっているじゃないか。セイラは、か弱い女性なんだぞ。男子たる者が守るのが道理であろうが。それに夜更かしはお肌の大敵。こんな寒風吹き荒ぶ中にセイラが出てきて、大事なお肌が荒れたら、どうするつもりなんだ。お前が責任を取るのか。」


 ホトトギスに一目も二目も置いているクロウリーであったが、このあまりに身勝手な発言には呆れ果てた。彼は恐る恐るホトトギスに抗議した。


「それは私達も一緒じゃないですか。それに、こんな大きな声を張り上げたら、待ち伏せの意味がないじゃないですか。」


「誰が待ち伏せをすると言った。」


 ホトトギスは、クロウリーにそう毒づいてから、さらに大きな声を上げてこう言った。


「男たる者、待ち伏せという卑怯で姑息な真似ができるものか。正々堂々と戦ってこそ、武名が鳴り響く。そうだろう、カイ。」


 急に同意を求められ、カイは「へっ」と奇妙な声を上げた。そして、ホトトギスの言葉に頷き、腰に佩いた剣をすらりと抜き去った。その姿を見て、不承不承ではあったが、クロウリーも呪文の詠唱に取り掛かった。


「何なんですか、あれは。」


 大きな石像が意志を持ったように自分達の下に近づくのを見て、クロウリーがそう素っ頓狂な声を上げた。


「何って、決まっているだろうが。あれはゴーレムじゃないか。」


 ホトトギスは、クロウリーにそう答えると、カイに


「行け、カイ。お前の剣で、あいつをぶった切ってこい。お前ならできる」


と無責任な声援を送った。


 ただ大きいだけで、動きは緩慢である。ゴーレムに近づき、一太刀を浴びせることは難しいことではない。しかし、相手は巨大な石像であり、いくらカイの剣が神秘な力を有する妖刀であろうが、切り付けただけでどうなるものではなかった。多少の傷をつけることは可能であろうが、それ以上に刃こぼれするのは目に見えていた。カイは即座にホトトギスの指図を拒否した。


 ホトトギスは、「使えない奴」と悪態をついてから、今度はクロウリーに命令した。


「クロウリー、お前が遣れ。お前の魔法で、あんな奴、粉々にしてしまえ。」


 魔術は奇跡を起こすことができる。とは言え、自分の魔法が目の前のゴーレムに有効なのか、クロウリーは全く自信がなかった。何しろ、相手はかつてこの世界を支配した古代文明の遺産であり、彼以上の魔術により造られた魔法構造物である。無効である可能性の方が高いように思われたが、狂暴で何をするか分からないホトトギスの命令には逆らえず、クロウリーは魔術を発動させた。


 雷光が周囲の闇に眩いばかりの光を撒き散らし、凄まじい速度でゴーレムへと直進し、轟音とともに炸裂した。ゴーレムの体が閃光に包まれ、その爆発の衝撃で地面に倒れ込んだ。炸裂した際の爆音と、ゴーレムが地面へと倒れ込むドスンという大きな音で、ホトトギスの子守り歌で眠りに就かされた鳥達が驚き、一斉に闇夜に飛び上がった。


 クロウリーは、鳥が舞い上がるバサバサという喧騒の中、地面に倒れ込んだゴーレムを信じられない思いで見詰めていた。「私もなかなかなもんですね」と一人得意になっている目の前で、ゴーレムがゆっくり体を持ち上げようとし始めた。その姿を見て、やはりと何処か安心したように思いながら、クロウリーは再びうろたえ始めた。そして、ホトトギスに救いを求めた。


「どうしましょう。」


「本当におまえ達は役に立たん奴等だ。」


 ホトトギスは、呆れたようにそう嘯くと、愛するセイラを守るために、セイラの安眠を妨害する不届きなゴレームを懲らしめるために、ゴーレムの前に一羽で敢然と立ち塞がった。


 彼は、俺は何て格好が良いんだろう。セイラにこの雄姿を見せてやりたかったな、と自らの姿に陶酔していたが、ゴーレムは彼に意を払うことなく悠然と彼の目の前を通り過ぎていった。


 身はホトトギスなれども、かかる侮辱は初めてなり。かかる侮辱を受け、見過ごしたとあらば、末代までの恥。我がホトトギス族の武名のため、己の武名のため、かかる屈辱、濯がずあるべしや。


 ホトトギスは、きっとゴレームを睨み付けた。それから、彼はゴーレムの進む先に舞い下り、猛烈な勢いで雪を掘り始め、その雪煙をゴーレムに投げかけ始めた。すっかり視界を奪われたゴーレムは、それでもなお前を目指し直進した。そして、ドスンと大きな音を立てて、ホトトギスの仕掛けた大きな陥穽に落ち込んだ。ゴレームは、その落とし穴をよじ登ろうともがき始めたが、巨体が、その大きな質量が災いして、落とし穴から抜け出すことはできなかった。ホトトギスは、陥穽にはまり、悪あがきするゴーレムの姿を愉快そうに眺めながら、ゴレームを罵り始めた。それでも物足りないらしく、ゴレームの頭の上に糞を落としてから、「勝利の舞い」を踊り始めた。



この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。