So-net無料ブログ作成

ニュートン法 [ネコ騙し数学]

ニュートン法

Newton-method-01.pngf(x)を微分可能な関数とする。

方程式

  

の解をx=αとする。

右の図のように適当な点x₁を選び、y=f(x)の点(x₁,y₁)における接線の方程式は

  

で、この接線とx軸との交点のx座標x₂は、上の式にy=0を代入することによって、

  

となる。

そして、同様ににおける接線の接線を引き、この接線とx軸との交点のx座標x₃を求めると、

  

となり、この操作を繰り返せば繰り返すほど、こうして求められたf(x)=0の近似値である

f(x)=0の解、x=αに近づいてゆくことが予想される。


これがニュートン法である。

漸化式の形で書けば、ニュートン法は次のようになる。

  


Newton-method-tab-01.pngx=√3の近似値をニュートン法を用いて求めることにする。

x=√3の両辺を2乗すると

  

これを

  

とおき、f(x)=x²−3=0x>0)とすれば、これはx=√3と同値。

f'(x)=2xだから、

  

計算開始のx₀=1として、表計算ソフトを使って計算したものは次の通り。

4、5回計算するだけで、x=√3≒1.732050808という近似値に到達している。


ニュートン法は前回の2分法よりも速く、しかも急速に収束することがわかると思う。


ただし、ニュートン法は、次の例のように、収束しないことがある。

  

計算の初期値としてx₀=1、または、x₀=2を取ると、

接線の方程式が、それぞれ、

  

となり、x=1x=2を交互に永遠に行き来する。

Newtonhou-02.png

この他にも、f'(x)=0になる点に差し掛かったとき、ゼロ割が発生するなど、危険な一面も有している。

こういうことは極まれにしか起きないけれど、運悪くこのような事態に遭遇することがある。

2分法と比較すると、ニュートン法は収束の速度は速いけれど、安定性に欠ける。