So-net無料ブログ作成

放物型偏微分方程式の数値的解法1 [ネコ騙し数学]

放物型偏微分方程式の数値的解法1

 

grid--001.png放物型偏微分方程式の熱伝導方程式

  

を例に取り、差分法を用いた数値的な解法について考えることにする。

 

(1)の左辺の時間(偏)微分

  

右辺の2階の空間(偏)微分を

  

と、差分法を用いて近似すると、

  

ここで、

  

とおくと、

  

となる。

を計算する際、はすべて既知なので、(5)式を用いて逐次的にを計算することができる。

とくに、r=1/2のとき、(5)式は

  

になる。

 

このような解法を陽解法という。

陽解法は代数方程式を解くことなく簡単に計算できるが、

  

のとき、(5)を用いて求めた近似解は安定ではなく、振動解が得られる。

したがって、

  

となるようにΔtΔxを選ばないといけない。

 

(5)式の右辺を

  

と書き換え、右辺第2項を無視すると――なんと大胆な(^^ゞ――

  

誤差がこれにしたがって伝播するとする、安定であるためには、

  

でなければならい。

したがって、安定であるためには

  

・・・。

もう少し正確な議論をすると、誤差

  

に従うとする。

すると、

  

だから、少なくとも、安定であるためには

  

でなければならないに違いない。この条件を満たさないと、近似解は振動したり、発散するだろう。

そして、r>0だから、

  

 

正確な議論をするためには、von Neumannの判定法などを用いる必要があるが、それは厄介なので、簡易的にこの関係を求めてみたにゃ。

 

 

問題

  

を、初期条件

  

境界条件

  

のもとで、Δx=1として解け。

【解】

Δt

  

となるように、Δt=1にとると、

  

となる。

  

以下、同様に計算すると、次の表が得られる。

 

この結果をグラフにすると、次のようになる。

 ht-graph-001.png

定量的にはともかく、このような粗い計算であっても、指数関数的な現象を捉えており、定性的には正しい結果が得られていることがわかる。

 

より精度よく計算するために、Δx=0.1とすると、条件(7)より

  

よって、Δt0.01以下にとる必要があり、計算量が大きく増えてしまう。

したがって、実際は、熱伝導方程式を陽解法を用いて解くことはない。

 

こうした制約のない陰解法を次回紹介することにする。



nice!(0)  コメント(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。